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Abstract. We present aab initio Hohenberg—Kohn—Sham density functional study of structure
and electrical conductivity in hot dense hydrogen. Our study covers the density range 0.40-
1.34 mol cm® (r;, = 1.5-1, P = 1.5-24 Mbar) at temperaturés = 800-3000 K. In this

range both a molecular—atomic and an insulator—-metal transition are expected to take place. Our
results are compared with recent double-shock experiments in the hot fluid phase. We observe an
increase irv of an order of magnitude between= 1.5 and 1. At the lowest density, hydrogen

is @ molecular liquid below about 1100 K and continuously atomizes with incredsirft the

highest density, the sample is a monatomic liquid metal with high coordination humber at all
T. The metallic fluid is atomic, not molecular, for all densities investigated.

1. Introduction

The prospect of turning hydrogen, the lightest of all elements, into a metal has fascinated
physicists for many decades [1]. The energy difference of approximately 10 eV between
insulating and conducting states would require on the order of 10 Mbar pressure to
be overcome by mechanical work. Alternatively, temperatures around 100000 K could
accomplish metallization. Two strategies are currently being pursued to make metallic
hydrogen.

Static high-pressure application at low temperatures in diamond anvil cells has reached
the 2 Mbar mark [2]. One is limited to indirect optical methods to infer structure and
conductivity in extremely small samples, and definitive results are difficult to obtain [3].
It is therefore unclear from an experimental point of view whether the current maximum-
pressure phase (‘H-A’ or ‘phase III') is metallic, atomic, both or neither. One can put a
lower bound of 1.5 Mbar on the loW- metallization pressure. Incidentally, this implies
that metallic hydrogen will have a much higher specific weigh®.g g cn3) than lithium,
the ‘true’ lightest of all metals.

Dynamical (multiple-) shock experiments generate Mbar pressures at several thousand
kelvin temperatures, and are more interesting from an applications point of view. They probe
the behaviour of the material under conditions of inertial confinement fusion experiments
and in the interiors of planets, stars and other astrophysical objects. Very recently,
metallization was indeed accomplished in the fluid phase using this elegant method [4, 5].
The experimental data show no evidence for a non-continuous first-order transition [6]. The
authors of this work [4, 5] also claim, on the basis of a parametrized free energy model of
an ideal mixture of I molecules and H atoms with necessarily crude approximations [7],
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Figure 1. Pressure—volume relationship(V) for solid molecular hydrogen. The specific
volume range shown i¥¥ = 1.69-5.0 cd mol~! (r, = 1.3-1.86). Solid line: present
calculations af” = 0 K (‘electronic’ pressures only). Dotted line (1): measurement given in [8].
Dash-dotted line (2): measurement given in [9]. In our calculations density is the independent
variable. We have calculated the pressures as function of deAsjy by explicit E;, (o)
calculations in small unit cells with four molecules, optimizing all geometrical parameters
and fitting the results to a Birch—-Murnaghan [8] equation of stafe £ 23.0 cn® mol 2,

Ko = 0.182 GPa,K; = 5.35 and KoKj = 7.06). Our calculated pressures are in good
agreement with experiment and less tha@% higher than measured in the solid [9] for, e.g.

rs > 1.5. Note, however, that the experimental pressures in the fluid phase are significantly
higher at the same density~120 GPa [4] and~70 GPa [9] in the fluid and solid phases,
respectively, at 3.2 cthmol~1). Thermal pressure differences15 GPa) are not the major
cause of this effect. In the shock experiments presguend temperatur& are measured and

the densityp is extracted from a model EOS. [4] cites a probable erroe6% in the resulting
‘experimental’ p values (the uncertainties ifi are likely to be larger than this). Oup-V
conversion is based on the molecular solid. A& 1.5 Mbar our computer sample has a higher
density (0.40 mol cm3) than the fluid in the experiment [4] (0.34 mol ).

that the sample at the metallization point is basicaliydissociated (atomic) but molecular.
Our ab initio simulations lead to the reverse conclusion.

The calculations presented here address g domain of astrophysical objects
and shock experiments. AC and DC conductivities are computed at fixed densities of
p = 0.40, 0.59 and 1.34 mol cmi (electron sphere radius parameter= 1.5, 1.3 and
1.0; rya0 = (3V,/(4m))Y3, whereaqy is the Bohr radius and, is the volume per electron).

This corresponds to calculated pressures within our modét ef 1.5, 3.8 and 24 Mbar,
respectively (see figure 1). The temperatures were varied between 800 K and 3000 K. In
plasma physics language, all our calculations were carried out deep in the ‘strong coupling’
regime. The dimensionless ion coupling paramdter= Ze?/(r.k,T) ranged from 100

(ry, =1, T = 3000 K) to 244 £, = 1.5, T = 800 K). Likewise, the electronic system is
deep in the quantal domain, with= T/Tr < 1 (T is the Fermi temperature of the fully
degenerate non-interacting electron gas; Herex 6 x 10° K r;2).

Many band structure calculations for hydrogen at various levels of sophistication have
been reported [2, 10, 11], but they treat the system as beirfg &t 0 K and numerical
values for the electrical conductivity cannot easily be calculated. Explieitcalculations
were only performed in the context of more approximate treatments of electrons and ionic
structure and dynamics. All these schemes are inspired by plasma theory and geared towards
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the high-temperature, high-density monatomic liquid¢ 0.1-10). Stevenson and Ashcroft
have applied Ziman’s theory to fully ionized dense conducting liquids including hydrogen
[12]. Their treatment was later expanded to include temperature and dynamic effects more
faithfully [13]. Hansen and McDonald [14] have performed molecular dynamics (MD)
simulations of the classical two-component plasma (TCP), where ions and electrons interact
with pseudopotentials which differ from the bare Coulomb potential. Perrot and Dharma-
wardana derive similar inter-particle pseudopotentials from approximate density functional
theories (DFT), but then use hypernetted chain theory to treat the ionic structure [15].
Ichimaru and Tanaka [16] have developed an elaborate scheme for numerical simulations
of the electron scattering process in the random fields of the ions, considering also quantum
statistical effects on the electron distribution. More recently, a thermodynamic Green
function approach has been combined with generalized hydrodynamic theory, to calculate
dynamical conductivities under the inclusion of self-consistent localization effects [17].

2. Method and computational details

These calculations make various assumptions about the electron—ion, ion—ion and/or
electron—electron interaction which make them unsuitable in the density—temperature regime
targeted here. Covalent chemical bonds, electron localization and details of the ionic
structure play an important role in the vicinity of the molecular—atomic and insulator-metal
transition. A method that calculates conductivities quantitatively, treats electron—ion and
electron—electron interactions quantum mechanically and that malepnmri assumptions

about ion—ion forces and the ionic structure &minitio method), would be highly desirable.

In this contribution we use MD to generate ionic trajectories and compute the forces acting
on the classical ions

MR, = —VRr,Eprr 1)

from first principles using Hohenberg—Kohn—Sham density functional theory (DFT) [18] in
the local approximation (LDA). The electronic structure is obtained with little additional
effort.

To compute suclab initio trajectories we use the Car—Parrinello method [19], for which
numerous reviews are available [20]. The fictitious magsegfor the electronic wave
functionsy;) and the time step sizesr range fromy = 800 au andAt = 4 au atr, = 1.5
tou = 30auandAr = 1 au atr, = 1. A double Noé thermostat for the ionic and electronic
subsystems was used to avoid the well known non-adiabaticity problems in microcanonical
simulations for the larges and Ar values [21]. We use cubic or nearly cubic orthorhombic
unit cells with periodic boundary conditions containing 96 £ 1.5) and 128 £, = 1.3,

1) hydrogen atoms. Samples of this size can still be thermally equilibrated in a few ps
of simulated time, the maximum trajectory length attainable with our computer resources.
Larger samples require longer equilibration runs (e.g. 10-15 ps with 250 particles-dt

and 3000 K) and are currently not practical within a full DFT-MD treatment. The plane
wave cut-off energy..,; in the expansion of th¢; was 50 Ryd. The electron—ion interaction

is represented by Martins—Troullier type local pseudopotentials [22] with matching radii of
rmarch = 0.3 @u and 0.2 au. We found this approach advantageous from a technical point
of view over using the bare Coulomb interaction. Optinda), and r,,..c, combinations

were selected from test calculation on the hydrogen molecule and various atomic crystal
structures at; = 1. The Car—Parrinello method has been used very successfully in high-
density hydrogen before [23—-26].
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Several (4-10) statistically independent configurations along carefully thermally
equilibrated trajectories were selected, and the frequency dependent conductivity computed
with the Kubo—Greenwood formula [27]

o) = 2T zzaf—a )(E: o E/)|P6(Es — Ei —Tiw) 0)

representing transitions between occupied initial (here Kohn—Sham LDA) and unoccupied
final statesi and f. The occupation numbers should be treated as Fermi-Dirac
distributions, but we assume the temperature to be low enough compared with the Fermi
temperaturely that we set alk; = 2 and alla; = 0. Theé function can be resolved by
averaging over a finite frequency intervaly, giving

2re?h? 1 [(Ei|d,|Ef)|?
. 3
@ =" hAwZZ E; — E; ®)

Equation (2) is, in principle, a very general formulation for the conductivity. It contains
electron—phonon and electron—electron scattering (the latter inasmuch as it is contained in
our model, DFT-LDA). Its implementation in the current study necessitates a number of
approximations. (i) Using & = 0 Fermi-Dirac distribution for the electrons amounts to
treating electron scattering in the relaxation time approximation and also implies that for
any non-zero band gap (always the case in a finite system calculation with discrete energy
levels, see (iv))g (w — 0) will show increasing statistical scatter and eventually quickly
and unphysically fall to zero. Therefore the DC conductivityp = 0) has to be calculated
extrapolating from finitew. We use a Drude formula for this extrapolation; its use will be
justified and the error estimated below. (ii) We include a limited number of unoccupied
states in our calculation (70-100, covering in exces¥gf,, = 3 Hartree au), and the
available range of energy differences between occupied and unoccupied molecular orbitals
in our calculations limitgo from above.o (w) will fall off artificially fast for o > E.,,4. We

have included a sufficiently large number of states for this effect to play no role here. Our
principal goal is the static (DC) conductivity. (iii) A potentially problematic approximation

is the usage of the electronic density of states (EDOS) obtained from LDA calculations.
The underestimation of the band gap is a well-known problem when using DFT—-LDA to
calculate optical excitations. (iv) Finally, we restrict ourselves to sampling one special
k-point (¢ = 0 in all MD simulations, and = 0 ork = [4, , (the Baldereschi point

[28]) in calculating the EDOS) in the Brillouin zone of the supercell containing typically
only some hundred electrons. This has characteristic consequences for the EDOS, as both
over- and underestimation of band gaps is possible (see section 3).

Despite these approximations, the current study represents a sophisticated attempt to
calculate conductivities in fluid high-density hydrogen. Both thermal (ionic) and electronic
structure effects are incorporated at a high level of theory, and no empirical parameters
enter our calculations. The procedure outlined above with all its approximations generally
yields results that are within 20—-30% of available experimental conductivities [29]. Only
one other very similar study on hydrogen has come to our attention [30], but covers a
different density—temperature regime.

3. Results and discussion

In figure 2 we present the frequency-dependent conductiMity) for r, = 1.5 (a), 1.3 (b),
and 1 (c) atT = 3000 K in ‘raw’ data form and fitted to a Drude formula. The errors for
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o — 0 are too large at the lower temperatures to allow a reliable extrapolatiemp«f

This is simply a manifestation of the substantial suppression of finite size effects at higher
temperature due to Fermi surface smearing. We have fitted dggthand the relaxation

time T separately in a simple two-parameter fit to the Drude expression

Opc
14 1202 )

for the data shown. The resulting,c and ¢ values can be found in table 1. The error
made in the extrapolation & = 3000 K is not more than about 25% (see figure 2).
Fitting a Drude formula, of course, assumes that hydrogen is a free-electron metal to a
good approximation at all densities investigated here. Within the statistical errors that they
carry, our data do not support a very different conclusion, and the Drude model provides
a simple physically motivated extrapolation. At= 1.5 one must suspect the opening of

an electronic gap as the temperature is lowered towards 0 K, and much better statistics in
conjunction with a non-parametric extrapolationaofw) will be necessary to observe the
corresponding drop iar asw approaches zero. Not surprisingly, the Drude formula provides

a better fit to our data with increasing density and, equivalently, metallicity (figure 2). But
even atr, = 1, noticeable deviations from ideal free-electron behaviour exist. It is evident
from figure 2 and table 1 that there is a clear trend towards higher valvewith increasing
densityo ~ pF = (N/ V), k > 0. This is what all conductivity models predict, though the
individual models differ ink (k = 1 in the Drude modelk = 1/2 in the Born treatment

of fully ionized plasmak = 4/3 in [13]). In reality, of course, one may expect a complex
functional behaviouw (p) because of ionic structural, chemical and electron localization
effects. We observe a more than twelvefold increase for a threefold increase ip.

o(w) =

Table 1. DC conductivitiesopc (in 10° @~ cm~1) and relaxation times (in au) from the
Drude fit equation (4) for various, values at 3000 K.

s opcC T

15 013 3.0
13 024 4.0
1 1.6 6.0

aExp.: Q02 x 10° Q1 cm ! [4].

All our samples are in the fluid phase with self-diffusion constants ranging from
D ~15x 102 (r, = 1.5, 3000 K) toD ~ 1 x 10* cn? s7* (r, = 1, 800 K) [23, 24].
While it is easy to define the terms ‘conductor’ and ‘insulator’ at zero temperature (the
former having a finite value fos, the latter havings = 0), such definition must be based
on the magnitude ob in the fluid phase at finit'. For the alkalis, the non-metal—
metal borderline can be placed at abouk 20° Q! cm™! [31]. Using this criterion,
hydrogen is already clearly metallic at = 1.5 and 3000 K. Experimentally [4], the
conductivity increases sharply with density up o= 0.31 mol cnt2 and then plateaus
at about 20002~ cm! up to 0.36 mol cm?®, the end of the measurement range. Our
simulations atr, = 1.5 (o = 0.40 mol cn®) yield a conductivity value (see table 1)
of the same order of magnitude but about a factor of six larger. We attribute most of
this discrepancy to the pressure—density mismatch between our calculations and the shock
experiments (see figure 1), and to the experimental uncertainty in measuring temperature.
The error inopc (table 1) from sampling onl = 0 is estimated to be less than 30%
everywhere by comparing with selected evaluations of equation (2) at the Baldereschi point
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Figure 2. Frequency-dependent electrical conductivityw) for (a) ry = 1.5, (b) ry = 1.3 and

(c) ry =1 at 3000 K (thick line) and Drude fit (equation (4)) to the data (thin lire)s given

in units of 1¢ ©~1 cm™!, w in Hartree au. The error bars represent statistical errors only;
systematic errors are discussed in the text.
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Table 2. Average lifetimery, (in fs) of pairs of atoms, i.e. two atoms within a shell that contains
one neighbour irg(r), at various densities and temperaturegin K).

I T TH,

15 800 250

1400 30
3000 8
13 800 20
3000 5
1 800 25
3000 10

k =[3, 7. 31 [28]. As a consistency check, we have also computgd with the same
procedure in a sample of 216 atoms witk= 0 at 3000 K, and again obtain values within
30% of the results with 96 atoms.

We can also compare our numbers with the simulation described in [30], where a
very similar theoretical approach is used at higher temperatures. As expected for a metal,
opc falls with increasing temperature (from6lx 10° Q1 cmt at 3000 K (table 1) to
6.65 x 10* Q' cm! at about 16 000 K [30], at, = 1). The effect of temperature an
for T < 3000 K is too weak to be identifiable within the errors in our own calculations.

It is of great interest to identify the ‘mechanism’ (i.e. ionic structural changes and/or
changes in electronic structure) of the hydrogen metallization (see, e.g. [32]). The central
guestion is whether metallic hydrogen in the vicinity of the transition is still molecular or
already dissociated (atomic). Our simulations offer a direct view of the atomic and electronic
structure, and we can correlate the increase in conductivity betweerl.5 and 1.0 with
such changes. The pair correlation functigfr) at », = 1.5 (see figure 3(a)) shows the
progression from a molecular phase consisting of distinguishapladfecules at 800 K to
a dissociated phase at 3000 K. AtBB a sharp first peak ig(r) at aboutr = 1.5 au,
containing one neighbour represents intramolecular distances; the broad maximum centred
around 3.3 au arises from H-H distances betweemidlecules. Already at 1400 K (not
shown) the first maximum and minimum () appear much less pronounced, and at
3000 K, g(r) has the flat featureless form (figure 3(a)) known from simulations of the
one-component plasma (OCP) at low values of the Coulomb coupling cons{a3.

Obviously, intra- and intermolecular distances overlap with one another and with
distances between these and other components present in the sample (atoms, filaments
[23,24]). One often sought quantity, the ‘dissociation fraction’ [4,5] (implying the
proportion of molecules that have dissociated into atoms), is not well defined at these
high densities. A simple distance criterion can be applied and is meaningful when a
pronounced intramolecular peak is present such ag at 1.5 and 800 K. One may
still define as ‘molecules’ all pairs of atoms with distaneés< r;, the value ofr up
to which g(r) integrates to exactly 1r{ ~ 1.89, 1.77 and 1.41 au for, = 1.5, 1.3
and 1 at 3000 K, respectively). At = 1.5, when averaged over the entire trajectory,
96%, 70% and 58% of all atoms in the samples at 800, 1400 and 3000 K, respectively,
are ‘onefold coordinated’ in this way. One may conclude that the dissociation fraction is
therefore 4%, 30% and 42%. These numbers are in qualitative agreement with free energy
models fitted to available experimental data [5], and the sample appears mainly molecular.
This picture is too simplified, and more insight is provided by the average lifetime
of a thus defined pair. When these become comparable to, or shorter than, the period of
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Figure 3. Interproton pair correlation functiongr) at temperatures of 800 and 3000 K plotted
againstr/ry (in au) in hydrogen at (a); = 1.5, (b) 1.3 and (c) 1.0.

the fastest phonons<4000 cnT! or 8 x 1071° s, the values in the free Hmolecule) it
becomes meaningless to speak of ‘molecules’. Short-lived close approaches of pairs of
atoms are just fluctuations as a result of thermal motion and have nothing to do with the
H, molecule known from chemistry. In table 2 we show the'‘lfetimes calculated from

our simulations (microcanonical and Nibsanonical trajectories lead to virtually identical
results). Except at; = 1.5 and 800 K, pairs of atoms are very short lived, and the samples
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Figure 4. Plot of the average potential energyU(T) (normalized so thatAU (0) = 0),

as a function of temperature (both in units of31K) in our MD simulation ofr, = 1.5.

The measured values (diamonds) are obtained as averages over the trajectories; the error bars
represent statistical errors. The solid line is a simple five-parameter fit to the data using a
standard form for/ (T') near finite-size broadened first-order phase transitions [34]. In the fit,

the specific heats]” anda; above and below the transition &t were chosen to be different:

c(T) = ali +ap exp[f(TfT(.)Z/ag]. Our analysis shows that the transition arodhd= 1100 K

is from a molecular phase of hydrogen to a dissociated phase. Such transition is not observed
atry = 1.3 and 1 (see text).

should not be considered ‘molecular’ at all. Considerable dissociation of molecules sets in at
1000 K and is complete at 3000 K at= 1.5. We can determine the transition temperature

T, by plotting the potential energy/ as a function of temperature (see figure 4), and obtain

T, = 1100 K forry = 1.5 (r, = 1.3 and 1 are atomic already at Ioij)f. All our computer
samples in the metallic phase at 3000 K are therefore properly described as atomic, contrary
to [4,32]. The models used in [4, 32] are too simple to describe such a complex fluid.

Itis also interesting to monitor the changes in electronic structure as the density increases
(see figure 5). By doing so, we can also gain insight into the electronic finite size effects. At
all r; values the LDA electronic density of states (EDOS) at 3000 K is more diffuse than at
800 K. The electronic eigenvalues are smeared out by thermal motion, a physical effect. As
the density increases the EDOS becomes more and more ‘free-electron-like’, i.e. resembles
a plane wave spectrum in the same MD box (dotted vertical lines in figure 5). This effect is
most visible atr; = 1. It becomes immediately clear that finite size effects have substantial
influence on the electronic structure. One cannot distinguish ‘true’ gaps between occupied
and unoccupied states from ‘artificial’ gaps incurred by the finite size of the sample. This
also leads to a certain arbitrariness in the occupation numbers for the electronic states.
Up to temperatures of about 1000 K, this induces characteristic variations in the geometric
structure ang (r) functions (the ‘flat’'g(r) atr, = 1 and 800 K in figure 3(c) is an example).

An interesting discussion of electronic and structural finite size effects deep in the metallic
phase of hydrogen can be found in [25]. The smearing of the Fermi surface by thermal
motion suppresses these effects sufficiently at 3000 K for equation (2) to become applicable.

1 The order of phase transitions is difficult to determine in computer simulations like this one, where a thorough
scaling analysis is computationally too expensive. We observe very little hysteresis in figure 4 (not larger than the
error bars), which provides some evidence that the transition may be continuous.
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Figure 5. LDA electronic density of state®(FE) for (a) ry = 1.5, (b) 1.3, and (c) 1.0 at 800 K
(bottom) and 3000 K (top) calculated /at= I". The solid vertical line is the Fermi energy. The
dashed vertical lines indicate the position of free-electron bands in an equivalent simple cubic
unit cell.
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4. Conclusions

We have used Car—Parrinebid initio molecular dynamics (AIMD) and a Kubo—Greenwood
formulation to analyse structure and conducting behaviour in hot fluid hydroget fod—
1.5. At 3000 K, where we can calculate conductivities with sufficient accuracy and compare
with experimental measurements, hydrogen is clearly metallic at all these densities. Within
the inherent statistical errors, the frequency dependency of the conduetityis well
described by a simple Drude model. An analysis of the atomic structure and dynamics
shows that the metallic samples at 3000 K are all atomic, not molecular. This contradicts
prior analyses of experimental data based on empirical free-energy models of hydrogen
[4,32].

We have also gained better insight into applicability of AIMD to electronic properties
in metallic systems in general. The most serious source of inaccuracies in the present
calculations is the finite size of the electronic systems or, equivalently, the strictly limited
k-space sampling. Electronic properties such as conductivity are more affected than ionic
structure. A substantial improvement over our present iepeint calculations would
probably require the inclusion of many hundreds or even thousands of atoms. Such
an improved calculation with substantially higher resolution could provide much sought
information about the transition from a semiconducting phase at lower densities and
temperatures to the metallic phase investigated here.
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