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‡ Department of Chemistry, Stanford University, Stanford, CA 94305, USA

Received 8 April 1997, in final form 28 August 1997

Abstract. We present anab initio Hohenberg–Kohn–Sham density functional study of structure
and electrical conductivityσ in hot dense hydrogen. Our study covers the density range 0.40–
1.34 mol cm−3 (rs = 1.5–1, P = 1.5–24 Mbar) at temperaturesT = 800–3000 K. In this
range both a molecular–atomic and an insulator–metal transition are expected to take place. Our
results are compared with recent double-shock experiments in the hot fluid phase. We observe an
increase inσ of an order of magnitude betweenrs = 1.5 and 1. At the lowest density, hydrogen
is a molecular liquid below about 1100 K and continuously atomizes with increasingT . At the
highest density, the sample is a monatomic liquid metal with high coordination number at all
T . The metallic fluid is atomic, not molecular, for all densities investigated.

1. Introduction

The prospect of turning hydrogen, the lightest of all elements, into a metal has fascinated
physicists for many decades [1]. The energy difference of approximately 10 eV between
insulating and conducting states would require on the order of 10 Mbar pressure to
be overcome by mechanical work. Alternatively, temperatures around 100 000 K could
accomplish metallization. Two strategies are currently being pursued to make metallic
hydrogen.

Static high-pressure application at low temperatures in diamond anvil cells has reached
the 2 Mbar mark [2]. One is limited to indirect optical methods to infer structure and
conductivity in extremely small samples, and definitive results are difficult to obtain [3].
It is therefore unclear from an experimental point of view whether the current maximum-
pressure phase (‘H–A’ or ‘phase III’) is metallic, atomic, both or neither. One can put a
lower bound of 1.5 Mbar on the low-T metallization pressure. Incidentally, this implies
that metallic hydrogen will have a much higher specific weight (>0.8 g cm−3) than lithium,
the ‘true’ lightest of all metals.

Dynamical (multiple-) shock experiments generate Mbar pressures at several thousand
kelvin temperatures, and are more interesting from an applications point of view. They probe
the behaviour of the material under conditions of inertial confinement fusion experiments
and in the interiors of planets, stars and other astrophysical objects. Very recently,
metallization was indeed accomplished in the fluid phase using this elegant method [4, 5].
The experimental data show no evidence for a non-continuous first-order transition [6]. The
authors of this work [4, 5] also claim, on the basis of a parametrized free energy model of
an ideal mixture of H2 molecules and H atoms with necessarily crude approximations [7],
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Figure 1. Pressure–volume relationshipP(V ) for solid molecular hydrogen. The specific
volume range shown isV = 1.69–5.0 cm3 mol−1 (rs = 1.3–1.86). Solid line: present
calculations atT = 0 K (‘electronic’ pressures only). Dotted line (1): measurement given in [8].
Dash-dotted line (2): measurement given in [9]. In our calculations density is the independent
variable. We have calculated the pressures as function of densityP(ρ) by explicit Etot (ρ)
calculations in small unit cells with four molecules, optimizing all geometrical parameters
and fitting the results to a Birch–Murnaghan [8] equation of state (V0 = 23.0 cm3 mol−1,
K0 = 0.182 GPa,K ′0 = 5.35 andK0K

′′
0 = 7.06). Our calculated pressures are in good

agreement with experiment and less than∼8% higher than measured in the solid [9] for, e.g.
rs > 1.5. Note, however, that the experimental pressures in the fluid phase are significantly
higher at the same density (∼120 GPa [4] and∼70 GPa [9] in the fluid and solid phases,
respectively, at 3.2 cm3 mol−1). Thermal pressure differences (615 GPa) are not the major
cause of this effect. In the shock experiments pressureP and temperatureT are measured and
the densityρ is extracted from a model EOS. [4] cites a probable error of<5% in the resulting
‘experimental’ρ values (the uncertainties inT are likely to be larger than this). OurP–V
conversion is based on the molecular solid. AtP = 1.5 Mbar our computer sample has a higher
density (0.40 mol cm−3) than the fluid in the experiment [4] (0.34 mol cm−3).

that the sample at the metallization point is basicallynot dissociated (atomic) but molecular.
Our ab initio simulations lead to the reverse conclusion.

The calculations presented here address theP/T domain of astrophysical objects
and shock experiments. AC and DC conductivities are computed at fixed densities of
ρ = 0.40, 0.59 and 1.34 mol cm−3 (electron sphere radius parameterrs = 1.5, 1.3 and
1.0; rsa0 = (3Ve/(4π))1/3, wherea0 is the Bohr radius andVe is the volume per electron).
This corresponds to calculated pressures within our model ofP = 1.5, 3.8 and 24 Mbar,
respectively (see figure 1). The temperatures were varied between 800 K and 3000 K. In
plasma physics language, all our calculations were carried out deep in the ‘strong coupling’
regime. The dimensionless ion coupling parameter0 = Ze2/(rskbT ) ranged from 100
(rs = 1, T = 3000 K) to 244 (rs = 1.5, T = 800 K). Likewise, the electronic system is
deep in the quantal domain, withθ = T/TF � 1 (TF is the Fermi temperature of the fully
degenerate non-interacting electron gas; hereTF ≈ 6× 105 K r−2

s ).
Many band structure calculations for hydrogen at various levels of sophistication have

been reported [2, 10, 11], but they treat the system as being atT = 0 K and numerical
values for the electrical conductivityσ cannot easily be calculated. Explicitσ calculations
were only performed in the context of more approximate treatments of electrons and ionic
structure and dynamics. All these schemes are inspired by plasma theory and geared towards



Structure and electrical conductivity in fluid hydrogen 11025

the high-temperature, high-density monatomic liquid (0 ≈ 0.1–10). Stevenson and Ashcroft
have applied Ziman’s theory to fully ionized dense conducting liquids including hydrogen
[12]. Their treatment was later expanded to include temperature and dynamic effects more
faithfully [13]. Hansen and McDonald [14] have performed molecular dynamics (MD)
simulations of the classical two-component plasma (TCP), where ions and electrons interact
with pseudopotentials which differ from the bare Coulomb potential. Perrot and Dharma-
wardana derive similar inter-particle pseudopotentials from approximate density functional
theories (DFT), but then use hypernetted chain theory to treat the ionic structure [15].
Ichimaru and Tanaka [16] have developed an elaborate scheme for numerical simulations
of the electron scattering process in the random fields of the ions, considering also quantum
statistical effects on the electron distribution. More recently, a thermodynamic Green
function approach has been combined with generalized hydrodynamic theory, to calculate
dynamical conductivities under the inclusion of self-consistent localization effects [17].

2. Method and computational details

These calculations make various assumptions about the electron–ion, ion–ion and/or
electron–electron interaction which make them unsuitable in the density–temperature regime
targeted here. Covalent chemical bonds, electron localization and details of the ionic
structure play an important role in the vicinity of the molecular–atomic and insulator–metal
transition. A method that calculates conductivities quantitatively, treats electron–ion and
electron–electron interactions quantum mechanically and that makes noa priori assumptions
about ion–ion forces and the ionic structure (anab initio method), would be highly desirable.
In this contribution we use MD to generate ionic trajectories and compute the forces acting
on the classical ions

MI R̈I = −∇RI
EDFT (1)

from first principles using Hohenberg–Kohn–Sham density functional theory (DFT) [18] in
the local approximation (LDA). The electronic structure is obtained with little additional
effort.

To compute suchab initio trajectories we use the Car–Parrinello method [19], for which
numerous reviews are available [20]. The fictitious massesµi (for the electronic wave
functionsψi) and the time step sizes1t range fromµ = 800 au and1t = 4 au atrs = 1.5
toµ = 30 au and1t = 1 au atrs = 1. A double Nośe thermostat for the ionic and electronic
subsystems was used to avoid the well known non-adiabaticity problems in microcanonical
simulations for the largerµ and1t values [21]. We use cubic or nearly cubic orthorhombic
unit cells with periodic boundary conditions containing 96 (rs = 1.5) and 128 (rs = 1.3,
1) hydrogen atoms. Samples of this size can still be thermally equilibrated in a few ps
of simulated time, the maximum trajectory length attainable with our computer resources.
Larger samples require longer equilibration runs (e.g. 10–15 ps with 250 particles atrs = 1
and 3000 K) and are currently not practical within a full DFT–MD treatment. The plane
wave cut-off energyEcut in the expansion of theψi was 50 Ryd. The electron–ion interaction
is represented by Martins–Troullier type local pseudopotentials [22] with matching radii of
rmatch = 0.3 au and 0.2 au. We found this approach advantageous from a technical point
of view over using the bare Coulomb interaction. OptimalEcut and rmatch combinations
were selected from test calculation on the hydrogen molecule and various atomic crystal
structures atrs = 1. The Car–Parrinello method has been used very successfully in high-
density hydrogen before [23–26].
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Several (4–10) statistically independent configurations along carefully thermally
equilibrated trajectories were selected, and the frequency dependent conductivity computed
with the Kubo–Greenwood formula [27]

σ(ω) = 2πe2h̄2

m2�

∑
i

∑
f

(
af − ai

)∣∣〈Ei∣∣∂x∣∣Ef 〉∣∣2δ(Ef − Ei − h̄ω) (2)

representing transitions between occupied initial (here Kohn–Sham LDA) and unoccupied
final statesi and f . The occupation numbersa should be treated as Fermi–Dirac
distributions, but we assume the temperature to be low enough compared with the Fermi
temperatureTF that we set allai = 2 and allaf = 0. Theδ function can be resolved by
averaging over a finite frequency interval1ω, giving

σ(ω) = 2πe2h̄2

m2�

1

h̄1ω

∑
i

∑
f

|〈Ei |∂x |Ef 〉|2
Ef − Ei . (3)

Equation (2) is, in principle, a very general formulation for the conductivity. It contains
electron–phonon and electron–electron scattering (the latter inasmuch as it is contained in
our model, DFT–LDA). Its implementation in the current study necessitates a number of
approximations. (i) Using aT = 0 Fermi–Dirac distribution for the electrons amounts to
treating electron scattering in the relaxation time approximation and also implies that for
any non-zero band gap (always the case in a finite system calculation with discrete energy
levels, see (iv)),σ(ω → 0) will show increasing statistical scatter and eventually quickly
and unphysically fall to zero. Therefore the DC conductivityσ(ω = 0) has to be calculated
extrapolating from finiteω. We use a Drude formula for this extrapolation; its use will be
justified and the error estimated below. (ii) We include a limited number of unoccupied
states in our calculation (70–100, covering in excess ofEcond = 3 Hartree au), and the
available range of energy differences between occupied and unoccupied molecular orbitals
in our calculations limitsω from above.σ(ω) will fall off artificially fast for ω > Econd . We
have included a sufficiently large number of states for this effect to play no role here. Our
principal goal is the static (DC) conductivity. (iii) A potentially problematic approximation
is the usage of the electronic density of states (EDOS) obtained from LDA calculations.
The underestimation of the band gap is a well-known problem when using DFT–LDA to
calculate optical excitations. (iv) Finally, we restrict ourselves to sampling one special
k-point (k = 0 in all MD simulations, andk = 0 or k = [ 1

4,
1
4,

1
4] (the Baldereschi point

[28]) in calculating the EDOS) in the Brillouin zone of the supercell containing typically
only some hundred electrons. This has characteristic consequences for the EDOS, as both
over- and underestimation of band gaps is possible (see section 3).

Despite these approximations, the current study represents a sophisticated attempt to
calculate conductivities in fluid high-density hydrogen. Both thermal (ionic) and electronic
structure effects are incorporated at a high level of theory, and no empirical parameters
enter our calculations. The procedure outlined above with all its approximations generally
yields results that are within 20–30% of available experimental conductivities [29]. Only
one other very similar study on hydrogen has come to our attention [30], but covers a
different density–temperature regime.

3. Results and discussion

In figure 2 we present the frequency-dependent conductivityσ(ω) for rs = 1.5 (a), 1.3 (b),
and 1 (c) atT = 3000 K in ‘raw’ data form and fitted to a Drude formula. The errors for
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ω → 0 are too large at the lower temperatures to allow a reliable extrapolation ofσDC .
This is simply a manifestation of the substantial suppression of finite size effects at higher
temperature due to Fermi surface smearing. We have fitted bothσDC and the relaxation
time τ separately in a simple two-parameter fit to the Drude expression

σ(ω) = σDC

1+ τ 2ω2
(4)

for the data shown. The resultingσDC and τ values can be found in table 1. The error
made in the extrapolation atT = 3000 K is not more than about 25% (see figure 2).
Fitting a Drude formula, of course, assumes that hydrogen is a free-electron metal to a
good approximation at all densities investigated here. Within the statistical errors that they
carry, our data do not support a very different conclusion, and the Drude model provides
a simple physically motivated extrapolation. Atrs = 1.5 one must suspect the opening of
an electronic gap as the temperature is lowered towards 0 K, and much better statistics in
conjunction with a non-parametric extrapolation ofσ(ω) will be necessary to observe the
corresponding drop inσ asω approaches zero. Not surprisingly, the Drude formula provides
a better fit to our data with increasing density and, equivalently, metallicity (figure 2). But
even atrs = 1, noticeable deviations from ideal free-electron behaviour exist. It is evident
from figure 2 and table 1 that there is a clear trend towards higher values ofσ with increasing
densityσ ∼ ρk = (N/V )k, k > 0. This is what all conductivity models predict, though the
individual models differ ink (k = 1 in the Drude model,k = 1/2 in the Born treatment
of fully ionized plasma,k = 4/3 in [13]). In reality, of course, one may expect a complex
functional behaviourσ(ρ) because of ionic structural, chemical and electron localization
effects. We observe a more than twelvefold increase inσ for a threefold increase inρ.

Table 1. DC conductivitiesσDC (in 105 �−1 cm−1) and relaxation timesτ (in au) from the
Drude fit equation (4) for variousrs values at 3000 K.

rs σDC τ

1.5 0.13a 3.0
1.3 0.24 4.0
1 1.6 6.0

a Exp.: 0.02× 105 �−1 cm−1 [4].

All our samples are in the fluid phase with self-diffusion constants ranging from
D ∼ 1.5× 10−3 (rs = 1.5, 3000 K) toD ∼ 1× 10−4 cm2 s−1 (rs = 1, 800 K) [23, 24].
While it is easy to define the terms ‘conductor’ and ‘insulator’ at zero temperature (the
former having a finite value forσ , the latter havingσ = 0), such definition must be based
on the magnitude ofσ in the fluid phase at finiteT . For the alkalis, the non-metal–
metal borderline can be placed at about 2× 103 �−1 cm−1 [31]. Using this criterion,
hydrogen is already clearly metallic atrs = 1.5 and 3000 K. Experimentally [4], the
conductivity increases sharply with density up toρ = 0.31 mol cm−3 and then plateaus
at about 2000�−1 cm−1 up to 0.36 mol cm−3, the end of the measurement range. Our
simulations atrs = 1.5 (ρ = 0.40 mol cm−3) yield a conductivity value (see table 1)
of the same order of magnitude but about a factor of six larger. We attribute most of
this discrepancy to the pressure–density mismatch between our calculations and the shock
experiments (see figure 1), and to the experimental uncertainty in measuring temperature.
The error inσDC (table 1) from sampling onlyk = 0 is estimated to be less than 30%
everywhere by comparing with selected evaluations of equation (2) at the Baldereschi point
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(a)

(b)

(c)

Figure 2. Frequency-dependent electrical conductivityσ(ω) for (a) rs = 1.5, (b) rs = 1.3 and
(c) rs = 1 at 3000 K (thick line) and Drude fit (equation (4)) to the data (thin line).σ is given
in units of 105 �−1 cm−1, ω in Hartree au. The error bars represent statistical errors only;
systematic errors are discussed in the text.
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Table 2. Average lifetimeτH2 (in fs) of pairs of atoms, i.e. two atoms within a shell that contains
one neighbour ing(r), at various densities and temperaturesT (in K).

rs T τH2

1.5 800 250
1400 30
3000 8

1.3 800 20
3000 5

1 800 25
3000 10

k = [ 1
4,

1
4,

1
4] [28]. As a consistency check, we have also computedσDC with the same

procedure in a sample of 216 atoms withk = 0 at 3000 K, and again obtain values within
30% of the results with 96 atoms.

We can also compare our numbers with the simulation described in [30], where a
very similar theoretical approach is used at higher temperatures. As expected for a metal,
σDC falls with increasing temperature (from 1.6× 105 �−1 cm−1 at 3000 K (table 1) to
6.65× 104 �−1 cm−1 at about 16 000 K [30], atrs = 1). The effect of temperature onσ
for T < 3000 K is too weak to be identifiable within the errors in our own calculations.

It is of great interest to identify the ‘mechanism’ (i.e. ionic structural changes and/or
changes in electronic structure) of the hydrogen metallization (see, e.g. [32]). The central
question is whether metallic hydrogen in the vicinity of the transition is still molecular or
already dissociated (atomic). Our simulations offer a direct view of the atomic and electronic
structure, and we can correlate the increase in conductivity betweenrs = 1.5 and 1.0 with
such changes. The pair correlation functiong(r) at rs = 1.5 (see figure 3(a)) shows the
progression from a molecular phase consisting of distinguishable H2 molecules at 800 K to
a dissociated phase at 3000 K. At 800 K a sharp first peak ing(r) at aboutr = 1.5 au,
containing one neighbour represents intramolecular distances; the broad maximum centred
around 3.3 au arises from H–H distances between H2 molecules. Already at 1400 K (not
shown) the first maximum and minimum ing(r) appear much less pronounced, and at
3000 K, g(r) has the flat featureless form (figure 3(a)) known from simulations of the
one-component plasma (OCP) at low values of the Coulomb coupling constant0 [33].

Obviously, intra- and intermolecular distances overlap with one another and with
distances between these and other components present in the sample (atoms, filaments
[23, 24]). One often sought quantity, the ‘dissociation fraction’ [4, 5] (implying the
proportion of molecules that have dissociated into atoms), is not well defined at these
high densities. A simple distance criterion can be applied and is meaningful when a
pronounced intramolecular peak is present such as atrs = 1.5 and 800 K. One may
still define as ‘molecules’ all pairs of atoms with distancesd 6 r1, the value ofr up
to which g(r) integrates to exactly 1 (r1 ≈ 1.89, 1.77 and 1.41 au forrs = 1.5, 1.3
and 1 at 3000 K, respectively). Atrs = 1.5, when averaged over the entire trajectory,
96%, 70% and 58% of all atoms in the samples at 800, 1400 and 3000 K, respectively,
are ‘onefold coordinated’ in this way. One may conclude that the dissociation fraction is
therefore 4%, 30% and 42%. These numbers are in qualitative agreement with free energy
models fitted to available experimental data [5], and the sample appears mainly molecular.
This picture is too simplified, and more insight is provided by the average lifetimeτH2

of a thus defined pair. When these become comparable to, or shorter than, the period of
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(a)

(b)

(c)

Figure 3. Interproton pair correlation functionsg(r) at temperatures of 800 and 3000 K plotted
againstr/rs (in au) in hydrogen at (a)rs = 1.5, (b) 1.3 and (c) 1.0.

the fastest phonons (≈4000 cm−1 or 8× 10−15 s, the values in the free H2 molecule) it
becomes meaningless to speak of ‘molecules’. Short-lived close approaches of pairs of
atoms are just fluctuations as a result of thermal motion and have nothing to do with the
H2 molecule known from chemistry. In table 2 we show the ‘H2’ lifetimes calculated from
our simulations (microcanonical and Nosé canonical trajectories lead to virtually identical
results). Except atrs = 1.5 and 800 K, pairs of atoms are very short lived, and the samples
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Figure 4. Plot of the average potential energy1U(T ) (normalized so that1U(0) = 0),
as a function of temperature (both in units of 103 K) in our MD simulation of rs = 1.5.
The measured values (diamonds) are obtained as averages over the trajectories; the error bars
represent statistical errors. The solid line is a simple five-parameter fit to the data using a
standard form forU(T ) near finite-size broadened first-order phase transitions [34]. In the fit,
the specific heatsa+1 anda−1 above and below the transition atTc were chosen to be different:
cv(T ) = a±1 +a2 exp[−(T−Tc)2/a2

3]. Our analysis shows that the transition aroundTc = 1100 K
is from a molecular phase of hydrogen to a dissociated phase. Such transition is not observed
at rs = 1.3 and 1 (see text).

should not be considered ‘molecular’ at all. Considerable dissociation of molecules sets in at
1000 K and is complete at 3000 K atrs = 1.5. We can determine the transition temperature
Tc by plotting the potential energyU as a function of temperature (see figure 4), and obtain
Tc = 1100 K for rs = 1.5 (rs = 1.3 and 1 are atomic already at lowT )†. All our computer
samples in the metallic phase at 3000 K are therefore properly described as atomic, contrary
to [4, 32]. The models used in [4, 32] are too simple to describe such a complex fluid.

It is also interesting to monitor the changes in electronic structure as the density increases
(see figure 5). By doing so, we can also gain insight into the electronic finite size effects. At
all rs values the LDA electronic density of states (EDOS) at 3000 K is more diffuse than at
800 K. The electronic eigenvalues are smeared out by thermal motion, a physical effect. As
the density increases the EDOS becomes more and more ‘free-electron-like’, i.e. resembles
a plane wave spectrum in the same MD box (dotted vertical lines in figure 5). This effect is
most visible atrs = 1. It becomes immediately clear that finite size effects have substantial
influence on the electronic structure. One cannot distinguish ‘true’ gaps between occupied
and unoccupied states from ‘artificial’ gaps incurred by the finite size of the sample. This
also leads to a certain arbitrariness in the occupation numbers for the electronic states.
Up to temperatures of about 1000 K, this induces characteristic variations in the geometric
structure andg(r) functions (the ‘flat’g(r) at rs = 1 and 800 K in figure 3(c) is an example).
An interesting discussion of electronic and structural finite size effects deep in the metallic
phase of hydrogen can be found in [25]. The smearing of the Fermi surface by thermal
motion suppresses these effects sufficiently at 3000 K for equation (2) to become applicable.

† The order of phase transitions is difficult to determine in computer simulations like this one, where a thorough
scaling analysis is computationally too expensive. We observe very little hysteresis in figure 4 (not larger than the
error bars), which provides some evidence that the transition may be continuous.
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(a)

(b)

(c)

Figure 5. LDA electronic density of statesD(E) for (a) rs = 1.5, (b) 1.3, and (c) 1.0 at 800 K
(bottom) and 3000 K (top) calculated atk = 0. The solid vertical line is the Fermi energy. The
dashed vertical lines indicate the position of free-electron bands in an equivalent simple cubic
unit cell.
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4. Conclusions

We have used Car–Parrinelloab initio molecular dynamics (AIMD) and a Kubo–Greenwood
formulation to analyse structure and conducting behaviour in hot fluid hydrogen forrs = 1–
1.5. At 3000 K, where we can calculate conductivities with sufficient accuracy and compare
with experimental measurements, hydrogen is clearly metallic at all these densities. Within
the inherent statistical errors, the frequency dependency of the conductivityσ(ω) is well
described by a simple Drude model. An analysis of the atomic structure and dynamics
shows that the metallic samples at 3000 K are all atomic, not molecular. This contradicts
prior analyses of experimental data based on empirical free-energy models of hydrogen
[4, 32].

We have also gained better insight into applicability of AIMD to electronic properties
in metallic systems in general. The most serious source of inaccuracies in the present
calculations is the finite size of the electronic systems or, equivalently, the strictly limited
k-space sampling. Electronic properties such as conductivity are more affected than ionic
structure. A substantial improvement over our present one-k-point calculations would
probably require the inclusion of many hundreds or even thousands of atoms. Such
an improved calculation with substantially higher resolution could provide much sought
information about the transition from a semiconducting phase at lower densities and
temperatures to the metallic phase investigated here.
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